Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

# S3 method for boot
tidy(x, conf.int = FALSE, conf.level = 0.95,
  conf.method = "perc", ...)

Arguments

x

A boot::boot() object.

conf.int

Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.

conf.level

The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

conf.method

Passed to the type argument of boot::boot.ci(). Defaults to "perc".

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to an augment() method that does not accept a newdata argument, it will use the default value for the data argument.

Details

If weights were provided to the boot function, an estimate column is included showing the weighted bootstrap estimate, and the standard error is of that estimate.

If there are no original statistics in the "boot" object, such as with a call to tsboot with orig.t = FALSE, the original and statistic columns are omitted, and only estimate and std.error columns shown.

See also

Value

A tibble::tibble() with columns:

bias

Bias of the statistic.

std.error

The standard error of the regression term.

term

The name of the regression term.

statistic

Original value of the statistic.

Examples

clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12) ) g1 <- glm(lot2 ~ log(u), data = clotting, family = Gamma) bootfun <- function(d, i) { coef(update(g1, data = d[i, ])) } bootres <- boot(clotting, bootfun, R = 999)
#> Error in boot(clotting, bootfun, R = 999): could not find function "boot"
tidy(g1, conf.int = TRUE)
#> # A tibble: 2 x 7 #> term estimate std.error statistic p.value conf.low conf.high #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) -0.0239 0.00133 -18.0 0.000000400 -0.0265 -0.0213 #> 2 log(u) 0.0236 0.000577 40.9 0.00000000136 0.0225 0.0247
tidy(bootres, conf.int = TRUE)
#> Error in tidy(bootres, conf.int = TRUE): object 'bootres' not found